TOP > SYLLABUS > 物理数学基礎 (馬場 昭好)

物理数学基礎 (馬場 昭好)


科目名: 物理数学基礎 (01) Fundamentals of Applied Mathematics
担当教員: 馬場 昭好 (マイクロ化総合技術センター) baba@cms.kyutech.ac.jp
対象分野科目 選択科目 2単位
1年 後期 火曜5限目 2101講義室

授業の概要

物理数学は科学・工学など全ての学科の基礎となる学問である。数学の基本概念を物理現象と対応させ講義することにより、物理現象を数学という言語で記述できるようになること、さらには方程式の解より物理現象をイメージできるようなることを目的とする。

カリキュラムにおけるこの授業の位置付け

受講にあたっては、他の科目の履修を前提としないが,以下の科目の基礎となる。「基礎物理学I,IIE」、「電磁気学I,II」、「現代物理学I,II」、「電気回路IE,IIE」、「電子回路IE,IIE」、「電子物理」、「半導体工学」、「磁性体工学」、「電子マテリアル工学」、「集積回路設計」、「LSI回路」。

授業項目 (授業計画)

(1) 物理と数学のかかわり

(2) 1変数関数の微分・積分

(3) 多変数関数の積分

(4) 近似計算(テーラー展開)

(5) 近似計算演習

(6) 常微分方程式と物理現象

(7) 中間試験

(8) ベクトルの基礎

(9) ベクトル量とスカラー量

(10) 微分演算子・ベクトルの傾き・発散・回転

(11) 偏微分方程式と物理現象(マクセル方程式)

(12) フーリエ級数展開の基礎

(13) フーリエ級数展開・変換

(14) 期末試験

授業の進め方

本講義は、上記項目に関連する講義を行う。講義中には質問を行うことで理解力を確かめる。さらに、レポート(宿題)を課す。講義・演習時には積極的な質問を歓迎する。

授業の達成目標 (学習・教育目標との関連)

電子情報工学科の目標(B)に挙げられている「自然科学に対する理解を深め、情報科学、数学、物理学などの基礎学力を育成する。」を達成するために、本講義では次のことを達成目標とする。

(1) 物理現象を数学で記述する方法を理解する。

(2) 数式で記述された方程式および解より物理現象を理解する。

(3) 数式の背景にある考え方を理解する。

成績評価の基準および評価方法

「授業の達成目標(学習・教育目標との関連)」に掲げた(1)?(3)の達成度評価は、講義中の質問における回答(10%)、中間試験の成績(20%)および期末試験の成績(70%)により評価する。

キーワード

微分、積分、テーラー展開、マクローリン展開、ベクトル場、ベクトル解析、フーリエ級数、微分方程式

教科書

特に指定はしない。

参考書

  • 長沼伸一郎著:「物理数学の直感的方法(第2版)」(通商産業研究者)
  • 一石賢著:「道具としての物理数学」(日本実業出版社)
  • 金谷健一著:「これなら分かる応用数学教室-最小二乗法からウェーブレットまで-」(共立出版)

備考